Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Bioorg Chem ; 112: 104967, 2021 07.
Article in English | MEDLINE | ID: covidwho-1213051

ABSTRACT

Nowadays, over 200 countries face a wellbeing emergency because of epidemiological disease COVID-19 caused by the SARS-CoV-2 virus. It will cause a very high effect on the world's economy and the worldwide health sector. The present work is an investigation of the newly synthesized 4-benzyl-1-(2,4,6-trimethyl-benzyl)-piperidine (M1BZP) molecule's inhibitory potential against important protein targets of SARS-CoV-2 using computational approaches. M1BZP crystallizes in monoclinic type with P1211 space group. For the title compound M1BZP, spectroscopic characterization like 1H NMR, 13C NMR, FTIR, were carried out. The geometry of the compound had been optimized by the DFT method and its results were compared with the X-ray diffraction data. The calculated energies for the Highest Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO) showed the stability and reactivity of the title compound. Intermolecular interactions in the crystal network were determined using Hirshfeld surface analyses. The molecular electrostatic potential (MEP) picture was drawn using the same level of theory to visualize the chemical reactivity and charge distribution on the molecule. Molecular docking study performed for the synthesized compound revealed an efficient interaction with the COVID-19 protease and resulted in good activities. We hope the present study would help workers in the field to develop potential vaccines and therapeutics against the novel coronavirus. Virtual ADME studies were carried out as well and a relationship between biological, electronic, and physicochemical qualifications of the target compound was determined. Toxicity prediction by computational technique for the title compound was also carried out.


Subject(s)
Antiviral Agents/metabolism , Piperidines/chemistry , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/metabolism , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/metabolism , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Binding Sites , COVID-19/pathology , COVID-19/virology , Crystallography, X-Ray , Density Functional Theory , Half-Life , Humans , Molecular Conformation , Molecular Docking Simulation , Piperidines/chemical synthesis , Piperidines/metabolism , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/metabolism , Viral Matrix Proteins/antagonists & inhibitors , Viral Matrix Proteins/metabolism
2.
Inform Med Unlocked ; 23: 100516, 2021.
Article in English | MEDLINE | ID: covidwho-1019125

ABSTRACT

The spread of SARS-CoV-2 has affected human health globally. Hence, it is necessary to rapidly find the drug-candidates that can be used to treat the infection. Since the main protease (Mpro) is the key protein in the virus's life cycle, Mpro is served as one of the critical targets of antiviral treatment. We employed virtual screening tools to search for new inhibitors to accelerate the drug discovery process. The hit compounds were subsequently docked into the active site of SARS-CoV-2 main protease and ranked by their binding energy. Furthermore, in-silico ADME studies were performed to probe for adoption with the standard ranges. Finally, molecular dynamics simulations were applied to study the protein-drug complex's fluctuation over time in an aqueous medium. This study indicates that the interaction energy of the top ten retrieved compounds with COVID-19 main protease is much higher than the interaction energy of some currently in use protease drugs such as ML188, nelfinavir, lopinavir, ritonavir, and α-ketoamide. Among the discovered compounds, Pubchem44326934 showed druglike properties and was further analyzed by MD and MM/PBSA approaches. Besides, the constant binding free energy over MD trajectories suggests a probable drug possessing antiviral properties. MD simulations demonstrate that GLU166 and GLN189 are the most important residues of Mpro, which interact with inhibitors.

SELECTION OF CITATIONS
SEARCH DETAIL